Evolution of the Topological Energy Band in Graphene Nanoribbons
نویسندگان
چکیده
Topological theory has been recently applied in graphene nanoribbons (GNRs) and predicts the existence of topological quantum states junctions connecting GNRs different classes. Through periodic alignment along a GNR backbone, frontier electronic bands with tunable band gaps widths could be generated. In this work, we demonstrate evolution by fabricating structures hosting single junction, dimerized junctions, multiple coupled on-surface synthesis, which guarantees atomic precision these nanostructures. Their structural properties are investigated scanning tunneling microscopy spectroscopy supported tight-binding theory. The 1D superlattice junction can described an effective two-band Su–Schrieffer–Heeger (SSH) type model considering two alternating coupling motifs.
منابع مشابه
Energy band-gap engineering of graphene nanoribbons.
We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurem...
متن کاملEnergy gaps in graphene nanoribbons.
Based on a first-principles approach, we present scaling rules for the band gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to have band gaps. This differs from the results of simple tight-binding calculations or solutions of the Dirac's...
متن کاملFlat-band ferromagnetism in armchair graphene nanoribbons
We study the electronic correlation effects in armchair graphene nanoribbons that have been recently proposed to be the building blocks of spin qubits. The armchair edges give rise to peculiar quantum interferences and lead to quenched kinetic energy of the itinerant carriers at appropriate doping level. This is a beautiful one-dimensional analogy of the Landaulevel formation in two dimensions ...
متن کاملEnergy gaps in etched graphene nanoribbons.
Transport measurements on an etched graphene nanoribbon are presented. It is shown that two distinct voltage scales can be experimentally extracted that characterize the parameter region of suppressed conductance at low charge density in the ribbon. One of them is related to the charging energy of localized states, the other to the strength of the disorder potential. The lever arms of gates var...
متن کاملAligning the band gap of graphene nanoribbons by monomer doping.
Silicon-based field-effect transistors (FETs) are the building blocks of modern digital logic circuitry and therefore part of virtually every electronic device available today. Over the past decades, continuous downscaling of existing designs has met the rising performance requirements, but as the size of FETs approaches the regime of atomic structures, new concepts are required to maintain the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physical Chemistry Letters
سال: 2021
ISSN: ['1948-7185']
DOI: https://doi.org/10.1021/acs.jpclett.1c02541